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An analysis is made of the variance of the spectral estimates calculated in the
DSN by two methods, namely the correlation method and the Fast Fourier
Transform (FFT) method. It is shown that the FFT method using consecutive
sequences of data samples produces the same variance as the correlation method.
However, a reduction of over 20% in variance can be obtained by using the FFT
method with overlapped sequences of data. A relationship is derived giving the
variance reduction as a function of the amount of data sequence overlap.

I. Introduction

The ability to distinguish useful signal characteristics
in a measured power spectrum of a signal with high
noise content is limited by the variance of the individual
spectrum point estimates resulting from the noise com-
ponent of the signal. Reduction of this variance is ac-
complished by using large amounts of data in either of
the two present methods of obtaining power spectra in
the DSN. In one method, the correlation method, the
autocorrelation function of the signal is accumulated
over a long period of observation. After the observation
time, the accumulated autocorrelation function is trans-
formed into an estimate of the power spectrum. In the
other method, the fast Fourier transform (FFT) method,
consecutive portions of data are each individually trans-
formed by the FFT and the squares of the magnitude

74

of the transformed points are taken to represent an
estimate of the power spectrum. These local spectral
estimates are averaged over the entire observation time
to obtain the final useful spectrum.

It will be shown that under equivalent conditions both
methods provide the same variance which is inversely
proportional to the observation time. The prime concern
of the following is to determine the spectral estimate
variance resulting from using the FFT method on over-
lapped sequences of data points rather than consecutive
sequences of data points. Since there are more terms to
be averaged using overlapped sequences of data, it might
be expected that the spectrum variance would be pro-
portionately smaller. Inhibiting this expectation is the
fact that the individual terms of the final averaged spec-
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trum are no longer statistically independent, and the
inverse proportionality rule for the variance of the aver-
aging statistic of independent terms no longer holds.
Nevertheless, a limited amount of variance reduction can
definitely be obtained using overlapped sets of data. The
penalty is, of course, the need to do more computing.

II. The FFT Method

To find the variance of the average of spectra from
overlapped data Sequences, it is first necessary to find
the covariance of corresponding spectral points in over-
lapped sequences. This covariance function is then used
in the formula for the variance of the averaging statistic
of nonindependent terms. The time series data are as-
sumed to be stationary zero mean gaussian noise with
samples uncorrelated to each other and with variance
equal to o® Using the FFT, the power spectrum, P,, of
a series of data points is

9 _;2ank
M2 Xk e " (1)

k=0

P, =

where X, is the kth data point, M is the number of data
points in the sequence, and n is the number of the spec-
tral point in the spectrum. M is considered to be a power
of two, and the range of n is

0<n<

M
5 (2)

If A; represents the frequency difference between adja-
cent power spectral points, and A, is the time between

data samples, then

1
ArAy = M (3)

For sinusoidal data, the main lobe width is 2A; and the
folding frequency is 1/(24;). The proportionality term in
Eq. (1) permits the total power, Pioei, in the sampled
signal to be found from

X,
Ptotalzl/Z(Po—l_Pi)‘f_EPn (4)

Similar to Eq. (1), the power spectrum, P, ., of an over-
lapped data sequence is

M-1+6 . 2ank z

9 —i
Prs = E Xpe ™ (5)

k=6

where 6 is the number of data points between the starts
of adjacent overlapped sequences. For ¢ equal to zero,
the sequences are identical, and for ¢ equal to M, the
sequences are consecutive. When 4 is less than M, the se-
quences are overlapped, and for 4 greater than M, there
are data points between the sequences which are not
included in either sequence.

Equations (1) and (5) may be manipulated to be

2 M-1 M-1-k %
. T
P,,, :W Xk Xk+1- CcOs M (6)
k=0 T=-k
o+M-1 e+M-1-L
2 21rn¢
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L=¢ Y=6-L

Using braces to indicate the ensemble mean or expected value, the product of the means of Egs. (6) and (7) is

M-1 M-1-k o+M-1 6+M-1-L

B (o) =30,

k=0 7=-k L=9
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where S(r), the mean of the product of X; and Xy, is the correlation function of the noise variable X. Similarly

Bly) = (Xu Xp.y) 9)

Because X; has been specified as stationary, the argument of the correlation function is formed by differencing the sub-
scripts of the two terms in the braces. The mean of the product of Egs. (6) and (7) is

M-1 M-1-k e+M-1 e+m—1-L

4 O 2
(PP, o) :—Z\_/FE 2 E z (X4 X7 XX 1,y) COS 7 cos ki

M M
k=0 T=-%k L=6 yY=o-L

(10)
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The mean of the product of four terms of a zero mean gaussian random variable (Ref. 1) is

(X1X2X3X4> = (X1X2> (X3X4) + <X1X3> <X2X4) + (X1X4> (X2X3> (11)

The covariance function, K, s, of the power spectral points as a function of 6 is found by subtracting Eq. (8) from
Eq. (10). Using Eq. (11) and the notation of Eq. (9) this becomes

M-1 M-1-%k e+m+1 g+M-1-L

D, {ek-Dak—L+ o~y

y=o-L

LD

k=0 7=—% L=¢

2mnr 271'1'1«1//
. + ,B(k ~ L — t//)ﬂ(k — L+ 'r)} CcOs —M—— Cos M (12)
Since uncorrelated noise samples were specified, the cor- — 1 ol
relation function is zero for all arguments unequal to P, :Wz Py pe (17)
zero. For zero argument, the correlation function is L=0

B(0) = o* (13)

where o? is the variance of the noise signal. Using Eq.
(13), Eq. (12) is laboriously simplified to

M-1-¢

8ot 2
K,.,9=A;;43M—o+2 2 (M — 8 — 1) cost ’;"
0<6< M -2

8ot

= 6=M-—1

= 6>M

= Ky -0 (14)

With the help of the identity
Y
M-1 sin {(2M - 1) ?}
cos kY = — % (15)
k=1 2 sin 5
the final form of Eq. (14) is found to be
s sin? 2#“01
4t M
= — )2 _— —
Ko M4l(M 6)2 + .227m§ 0<8<MM~—1
sm _1\4_
=0 6>M
= Ky - (16)

The final spectrum, F,:, is found by averaging the
individual overlapped spectra.
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where N is the number of overlapped spectra. If the
total observation time T is

T = KMaA, (18)

where K is some large positive integer, and the time be-
tween successive spectra is 6A;, the N is approximately

KM
N= T (19)

The variance of P, o, Dy, is given by

N-1
Kuo |, 2
Duo=g2 4> (N=L)Kuze  (20)
L=1

Since K, 1o is nonzero for only the lower values of L,
Eq. (20) can be approximated by

A
L
_ Kao 2
Dn’o — N + _N‘E Kn,Lg (21)
L=1
where ﬁ is
A M-1
e (22)

The brackets in Eq. (22) denote integer value. Substitut-
ing Eq. (16) and Eq. (19) in Eq. (21)

2 Sinz 21rnLt9 l
406 0\2 M
D"’G_Wll_’_z; <1_Lﬁ> +m ;
= sim M
(23)
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If the sinusoidal term in Eq. (23) is omitted, the error
in D,, is significant only at the extreme ends of the
power spectrum. For n equal to one, the maximum error
is 4.5% which occurs at /M equal to 0.76. For n equal
to two, the maximum error is 1.2% at 6/M equal to 0.87.
Further reduced is the maximum error at n equal to
three, which is 0.55% at 6/M equal to 0.915. Thus for n
unequal to zero or M/2, a good engineering approxima-
tion to Eq. (23) is

“RME M M=

Table 1 gives the value of D, for selected values of 6.
The reduction in variance given by Eq. (24) can be
equated to a corresponding dB increase in a signal-to-
noise power ratio. If the variance of the power spectrum
estimate was changed due to a change in noise power,
the signal-to-noise power ratio would vary inversely to
the square root of the variance change. Figure 1 is a
plot of Eq. (24) as an equivalent signal-to-noise power
ratio gain versus /M. Zero dB is defined for 6/M equal
to one. When 6/M is equal to one half, D,, is three
fourths of its value at /M equal to one. The equivalent
signal-to-noise power ratio gain is the square root of four
thirds or a gain of 0.625 dB at a cost of doubling the
number of transforms to be calculated. Values for 6/M
equal to one and /M equal to one half have been veri-
fied using Monte Carlo simulation tests.

lll. Correlation Method

Using the same total observation time as Eq. (18), the
number of data samples is KM. The observed correlation
function, Ry, is

1 LM-1

Rk Z XL XLgc (25)

In order to form a consistent basis of comparison be-
tween the correlation method and the FFT method, it
will be convenient to use a member of a discrete Fourier
transform pair to convert R; to a power spectrum P,.
Such a pair is derived from the general discrete Fourier
transform pair
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where C is any integer constant. Letting C equal —B,
A equal 2B + 1, and noting that R and P, are even real
functions, the pair in Eq. (26) can be written

Qwnk
P, —R0+22choszB7r_l_1
(27)
Biet b 423 P, cos K
*TOB+1 E nCOSTETT
Similar to Eq. (3)
1
AT (@)

An approximate comparison between Eq. (28) and
Eq. (3) is established if B is set equal to M/2. The de-
sired transform pair then becomes

M
4 R, = 2ank
=371 +Z:R"C"SM+1 (29)
= k
o 2 2rn
—+;PHCOSW (30)

The proportionality term in Eq. (29) is chosen so that R,
from Eq. (30) is

M
Ro="3+ > P, (31)

Since R, is the total power in the signal, a close simi-
larity exists between Eq. (31) and Eq. (4). As in Eq. (3),
Ay represents the frequency difference between adjacent
power spectral points. The main lobe width for sinusoidal
inputs is 2A; and the folding frequency is 1/(2a;). Cor-
responding to Eq. (3)

Ar Ay = (32)

M+1

As seen from Eq. (30), the range of n is as shown in
Eq. (2). Thus a consistent basis of comparison has been
established between the correlation method and the FFT
method.



Substituting Eq. (25) into Eq. (29) gives

With the help of Eqgs. (11), (13), and (15), Eq. (387) is
found to be

M
4 KM-1 2 KM-1 9mnk
Pn :Wﬁ{% LZ Xz +kZ LZ XLXLgc COSW} o 4ot 4ot
=0 =1 L= <P') — . + (38)
" (M + 1) KM(M +1)
(33)
. The variance of the power spectrum, D,, is found by
The mean of P, is subtracting Eq. (36) from Eq. (38).
M
. 4 KM-1 2 KMt Irnk 4ot
A e 1>{1/2 2 PO+ 2 2 AR cosyr 1} Ty %)
(34) - -
From Table 1 it is seen that this is very close to the FFT
Using Eq. (13), Eq. (34) becomes method where 6 equals M.
2q°
P =371 (35) IV. Conclusion
and the square of the mean is It has been shown that the variance of spectral esti-
mates is equivalent for either the correlation method of
(P = 4o (36) calculation, or the FFT method using consecutive se-
(M +1) quences of data points. With the FFT method, however,
. it is possible to reduce the variance by a maximum
The mean of the square of Eq. (33) is amouI}i)t of 33% by using overlapping sequences of data.
16 KM-1 KM An overlap of 50% will provide an improvement in
(P = m{% (X7 X3) signal-to-noise power ratio of 0.625 dB at a cost of dou-
. o e bling the required number of FFT calculations.
KM-1 2 KM-1 A nk
+ bt =t (X X Xp.m) cos M+1 Although the above analysis has not included the effect
of a correlation window, the use of such a window can
4_21 l KM EM-1 be considered to be a post-measurement convolutional
+33 > Y (XiXeaXeXe.s) calculation. As such, the absolute variance of the spectral
Rl st be0 s 0s points in both calculation methods will be reduced, but
2xnk 2ans the relative improvement shown in Fig. 1 will still be in
X cos = TSI T } (87) effect.
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Table 1.

FFT variance values
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SIGNAL-TO-NOISE RATIO POWER GAIN, dB
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Fig. 1. Equivalent S/N dB gain for overlapped

data sequences
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